Extracellular matrix density promotes EMT by weakening cell-cell adhesions.
نویسندگان
چکیده
Epithelial to mesenchymal transition (EMT), the process during which epithelial cells lose adhesions with neighbouring cells and get converted to migratory and invasive cells, is closely tied to cancer progression. Cancer progression is also marked by increased deposition and cross linking of fibrillar extracellular matrix (ECM) proteins including collagen and fibronectin, which lead to increase in ECM density and increased cell-matrix adhesions. Thus, an imbalance between cell-matrix and cell-cell adhesions underlies cancer progression. Though several experimental studies have shown a crosstalk between cell-cell and cell-matrix adhesions, the extent to which changes in ECM density can trigger EMT via formation of cell-matrix adhesions and disassembly of cell-cell adhesions remains incompletely understood. In this paper, we have developed a computational framework for studying modulation of cell-cell adhesion by ECM density, integrating findings from multiple studies that connect ECM-mediated adhesion signaling and growth factor signaling with cell-cell adhesion. Here, we have specifically tracked changes in the levels of the E-cadherin-β catenin (Eβ) complex in response to alterations in ECM density. Our results illustrate a tug-of-war between ECM density and E-cadherin in determining Eβ levels both for a single cell as well as for a cell population, with increase in ligand density weakening cell-cell adhesions and increase in E-cadherin levels counterbalancing the effect of ECM density. Consistent with model predictions, lower levels of membrane to cytoplasmic ratios of E-cadherin were observed in MCF-7 human breast cancer cells plated on substrates with increasing collagen density. By performing simulations for a heterogeneous population consisting of both normal and EMT cells, we demonstrate that ligand density and the fraction of EMT cells collectively determine the scattering potential of a cell population. Taken together, our findings are in support of a model where increase in cell-matrix adhesions negatively regulates cell-cell adhesions thereby contributing to EMT and enhanced cellular invasion.
منابع مشابه
IGF-1 Receptor and Adhesion Signaling: An Important Axis in Determining Cancer Cell Phenotype and Therapy Resistance
IGF-1R expression and activation levels generally cannot be correlated in cancer cells, suggesting that cellular proteins may modulate IGF-1R activity. Strong candidates for such modulation are found in cell-matrix and cell-cell adhesion signaling complexes. Activated IGF-1R is present at focal adhesions, where it can stabilize β1 integrin and participate in signaling complexes that promote inv...
متن کاملMolecular targets of pomegranate (Punica granatum) in preventing cancer metastasis
Metastasis is the primary cause of mortality and morbidity among cancer patients and accounts for about 90% of cancer deaths. The most common types of treatment for cancer metastasis are chemotherapy and radiotherapy. However, such therapy has many serious side effects that could diminish the quality of life in patients. There is increased appreciation by the scientific community that natural c...
متن کاملTopographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices
Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not on...
متن کاملADAM12 induction by Twist1 promotes tumor invasion and metastasis via regulation of invadopodia and focal adhesions.
The Twist1 transcription factor promotes tumor invasion and metastasis by inducing epithelial-mesenchymal transition (EMT) and invadopodia-mediated extracellular matrix (ECM) degradation. The critical transcription targets of Twist1 for mediating these events remain to be uncovered. Here, we report that Twist1 strongly induces expression of a disintegrin and metalloproteinase 12 (ADAM12). We ob...
متن کاملCell Adhesion and Its Endocytic Regulation in Cell Migration during Neural Development and Cancer Metastasis
Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular bioSystems
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2014